Выпуск XVI

1960 г.

Э. И. ВРЖАЩ,

кафедра технологии металлов и дерева

## РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ЦИАНИРОВАННОГО СЛОЯ СТАЛИ 20

Основываясь на том положении, что при цианировании одновременно протекают процессы науглероживания и азотирования стали, принято считать, что в цианированном слое образуются фазы, соответственные азотированному слою, но более сложные и менее изученные.

В большинстве работ, посвященных изучению структуры фаз, принадлежащих системе железо-азот, полученные данные в общих чертах близки между собой [1, 2, 3, 4, 5]. В них указывается на наличие в поверхности азотированного слоя гексагональной решетки  $\varepsilon$  — фазы, соответствующей соединению  $Fe_2N$ . В слоях, полученных при температурах процесса ниже  $650^\circ$ , наблюдается  $\gamma'$  — фаза, соответствующая нитриду  $Fe_4N$ .  $\gamma$  — фаза имеет решетку гранецентрированного куба с параметром  $\alpha = 3.784$ —3,804Ű. Указывается также, что параметр решетки  $\varepsilon$  — фазы изменяется с увеличением содержания в слое азота в пределах:

 $\dot{a} = 2,70-2,78A^{\circ} \text{ H C} = 4,33-4,44A^{\circ}.$ 

Однако в указанных работах, к сожалению, не приводятся рентгенометрические константы  $\varepsilon$  — фазы, что весь-

ма усложняет процесс ее идентифицирования.

 $\dot{H}$ . Ф. Вязников и А. А. Юргенсон [6], исследовавшие структуру фаз цианированного слоя, также обнаружили на его поверхности  $\varepsilon$  и  $\gamma'$  — фазы, количество которых с повышением температуры процесса уменьшается. Д. А. Про-

кошкин и П. М. Аржанный [7] утверждают, что на поверхности цианированного слоя образуется карбонитридная фаза, имеющая сложную кубическую решетку, подобную решетке магнитного окисла железа ( $Fe_3O_4$ ) с параметром а к. н. ф. = == 8.50A°.

Для выяснения состава структурных фаз цианированного слоя стали 20, полученного при различных режимах, проводились рентгенографические исследования.

### Оборудование и методика исследования

Исследования проводились на установке УРС-50-И, состоящей из рентгеновского аппарата, рентгеновской трубки, гониометра ГУР-3 со счетчиком Гейгера, электронно-измерительной схемой регистрации рентгеновских квантов и записывающего устройства.

Диффракционная картина автоматически записывалась при помощи интегрирующей схемы и самописца с синхронизированным движением образца, счетчика и бумаги. Определение нулевых установок образца и счетчика проводилось

с точностью  $\pm 0.005^{\circ}$ .

С целью уменьшения ошибки измерения интенсивности линий, связанной со случайными флуктуациями среднего числа отражающих кристаллов, образцы во время съемки вращались в своей плоскости со скоростью 20 об/мин.

Для рентгенографирования образцов были выбраны сле-

дующие режимы:

1. Излучение Fe — нефильтрованное, при напряжении 25 кv и силе тока — 8mA.

Шкала 1000 имп/сек.

2. Постоянная времени — 2 сек.

3. Скорость движения счетчика — 1 гр/мин.

4. Скорость движения диаграммной бумаги — 240 мм/час.

5. Ограничивающая щель: высота — 2 мм,

ширина — 1 мм. высота — 8 мм,

6. Приемная щель:

ширина — 0,25 мм.

Расчет диффрактограмм проводился в следующей послеповательности:

а) нумеровались все линии;

б) оценивалась их интенсивность;

в) измерялась действительная длина диффрактограммы и определялся ее масштаб К (число мм на 1°);

- r) измерялось расстояние (1) от начала диффрактограмимы до центра пика;
  - д) вычислялись углы диффракции для каждого пика;
- е) по вычисленным углам определялись значения меж-плоскотных расстояний.

Ошибка определения положения пика на дифрактограмме, в нашем случае, не превышает 0,002—0,005 единиц.

Исследуемые образцы представляли собой цилиндрики, диаметром 12 мм и высотой 6 мм с продольным срезом, площадью 30 мм<sup>2</sup>. Кроме съемки на диффактометре, проводилась дополнительная съемка рентгенограмм по методу съемки от шлифа в камере РКД, диаметром 57,3 мм.

Для получения отражений от всех плоскостей кристаллических решеток изучаемых фаз, съемка производилась при углах падения рентгеновских лучей на отражающую плоскость шлифа в 25 и 45°.

Съемка велась на Fe — нефильтрованном излучении при напряжении 25 кv и силе тока 12 mÅ, экспозиция составляла 30—40 мин.

Таблица 1

| № образца  |                        | ы циани-<br>ания       | Термическая                             |                      | рактеристи<br>ированного     |                               |                                                                                                         |  |
|------------|------------------------|------------------------|-----------------------------------------|----------------------|------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------|--|
|            | темпе-<br>ратура<br>°С | выдер-<br>жка в<br>час | обработка<br>после<br>цианирова-<br>ния | глу-<br>бина<br>в мм | твер-<br>дость               | микро-<br>твердость<br>кг/мм² | Приме-<br>ч <b>а</b> ние                                                                                |  |
| 1          | 850                    |                        |                                         | -                    | 156Нв                        |                               | Образец № 1,<br>заготовлен из<br>стали 20; не под-<br>вергался ника-<br>кой термичес-<br>кой обработке. |  |
| 72         | 850                    | 1                      | закалка                                 | 0,22                 | 42-4 <b>5</b> R <sub>c</sub> | 1050                          | Во всех слу-<br>чаях                                                                                    |  |
| 108        | 850                    | 3                      | закалка                                 | 0,55                 | <b>6</b> 0-62R <sub>c</sub>  | 1155                          | з <b>акалка</b> прово-<br>дил <b>ась</b>                                                                |  |
| <b>№</b> 2 | 850                    | 3                      | закалка, от-<br>пуск при<br>1000        | 0,56                 | 61—63R <sub>c</sub>          | 1155                          | от температуры                                                                                          |  |
| <b>№</b> 4 |                        | 3                      | закалка,<br>отпуск при<br>250°          | 0,55                 | 56 – 58R <sub>c</sub>        | 850                           | процесса в<br>воду                                                                                      |  |

Расчет рентгенограмм и их сравнение с соответствующими диффрактограммами показали полную тождественность диффракционных картин.

Данные об исследуемых образцах приведены в табли-

не № 1.

Кроме образцов, изготовленных из стали 20 (табл. 1), рентгенографированию также подвергался минерал  $Fe_3O_4$ , который являлся эталоном при идентифицировании карбонитридной фазы со сложной кубической решеткой. Диффрактограммы  $Fe_3O_4$  и образца  $\mathbb{N}$  1 (сталь 20) даны на фигурах 1 и 2.

### Результаты исследования

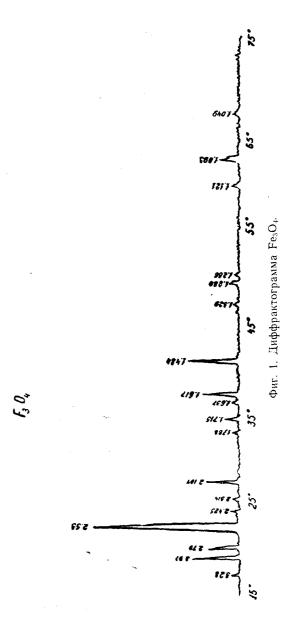
## Образец 72

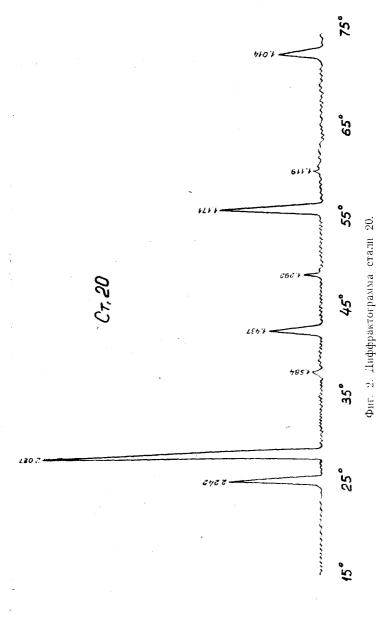
На диффрактограмме поверхности цианированного слоя (фиг. 3) четко зафиксированы линии карбонитрида со сложной кубической решеткой ( $Fe_3O_4$ ), а также линии аустенита ( $\gamma$  — фаза), мартенсита ( $\alpha$  — фаза) и линии малой интенсивности FeO (2,146 $A^\circ$ ).  $\epsilon$  — фаза не обнаружена.

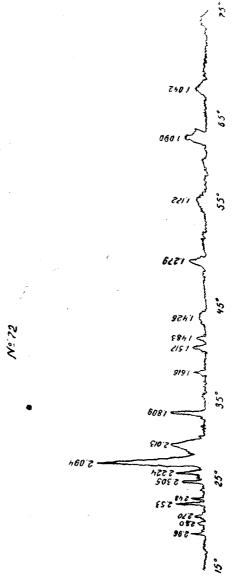
На расстоянии 0,10 мм от поверхности слоя карбонитрид-

ная фаза и FeO не обнаружены.

На фиг. 4б дана рентгенограмма поверхности цианированного слоя образца № 72.

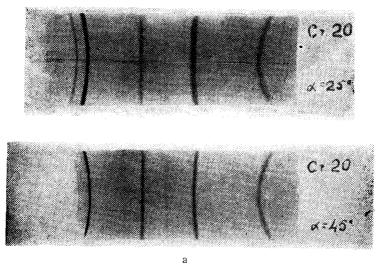

# Образец № 108

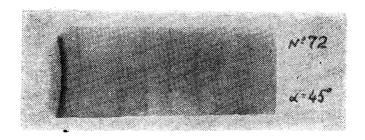

Диффрактограмма поверхности цианированного слоя, полученного при выдержке, равной 3 часам (фиг. 5), существенно отличается от диффрактограмм слоя, полученного при длительности процесса 1 час (фиг. 3) и нецианированного

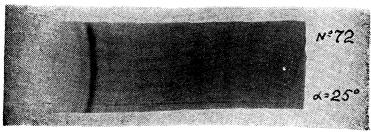

образца (фиг. 2).

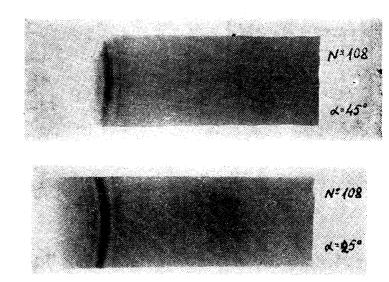
На диффрактограмме образца № 108 наблюдается большое количество линий, весьма четких в области углов 25—28°. Ввиду отсутствия достаточно надежных рентгенометрических констант карбидных, нитридных и карбонитридных фаз, провести полную расшифровку этой диффрактограммы весьма затруднительно.

На диффрактограмме (фиг. 5) зафиксированы линин  $\gamma$  — фазы (аустенита), карбонитридной фазы со сложной кубической решеткой ( $Fe_3O_4$ ). Слабая линия  $2,18A^\circ$  указывает на присутствие в структуре слоя  $\gamma'$  — фазы, соответствующей нитриду  $Fe_4N$ . В структуре слоя наблюдается зна-

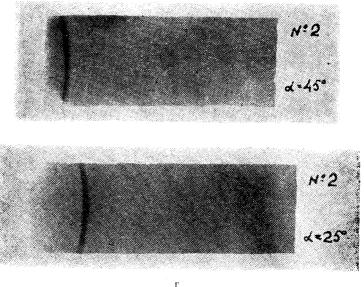


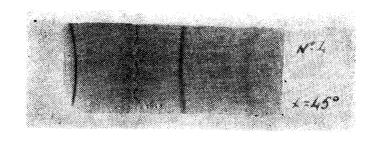



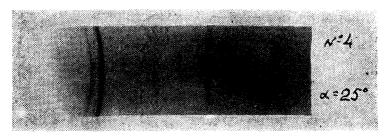





Фиг. 3. Диффрактограмма поверхности цванированного слоя образца № 72.

фиг. 4. Рентгенограммы поверхности цианированного слоя стали 20.






В







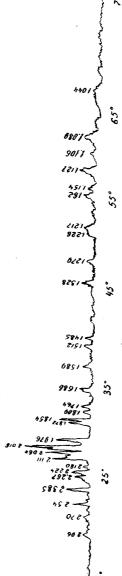
Д

чительное количество цементита, который, на наш взгляд, в данном случае можно назвать карбонитридом, типа Fe<sub>3</sub>.

Следует отметить, имеющиеся литературные данные рентгенометрических констант цементита существенно отличаются

друг от друга [5, 8, 9] (таблица 2).

Основные линии диффрактограммы образца  $\mathbb{N}_2$  108 нанболее близки к данным работы [9], (таблица 2). Липии азотистого мартенсита на диффрактограмме выражены слабо (2,031 $\mathrm{A}^\circ$ ).


Это явление, видимо, следует объяснить весьма мелко-

дисперсным состоянием его.

Для более полной расшифровки структурных фаз цианированного слоя образца № 108 необходимо дополнительно

провести электронномикроскопический анализ.

Однако уже расшифрованные фазы дают возможность сделать вывод, что сочетание в составе слоя фазовых структур цементита, карбонитридов, нитридов, мартенсита, аустенита обеспечивают цианированному слою малоуглеродистой конструкционной стали, полученному при длительности про-



Фиг. 5. Диффрактограмма поверхности цианированного слоя образца № 108.

несса 3 часа, максимальную твердость (R с = 63) и износоустойчивость [10].

На диффрактограмме же цианированной поверхности, подученной при выдержке 1 час (фиг. 3), линии цементита и — фазы не обнаружены. В силу этого твердость образ-

на № 72 оказалась не высокой (42—45R.).

На основании рентгенографического исследования структурных фаз цианированного слоя, полученного при выдержках в один и три часа, можно сделать вывод, что одночасовая выдержка процесса при цианировании стали 20 нелостаточна.

Аустенит способен еще свободно растворять в себе цементит. В силу этого при закалке от температуры процесса в цианированном слое отсутствует цементит и ү - фаза, придающие слою большую твердость и износоустойчивость.

На фиг. 4в дана рентгенограмма поверхности цианиро-

ванного слоя образца № 108.

На глубине 0,10 мм от поверхности слоя  $\gamma'$  — фаза не обнаружена, линии карбонитридной фазы (Fe<sub>3</sub>O<sub>4</sub>) малоинтенсивны, наблюдаются более четкие линии мартенсита (таблица 2).

Образец № 2

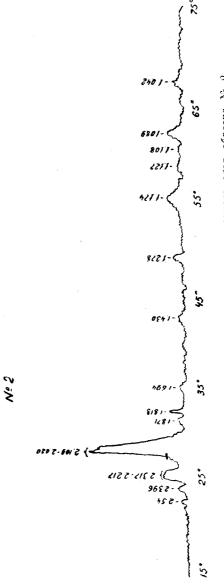
Образец № 2 после цианирования по режимам образца № 108 ( $t^{\circ}=850^{\circ};~\tau=3$  часа) и закалке в воде подвергался отпуску при температуре 100°.

На диффрактограмме (фиг. 6), видимо за счет наложения линий различных фаз ( а-и — фазы), наблюдается не-

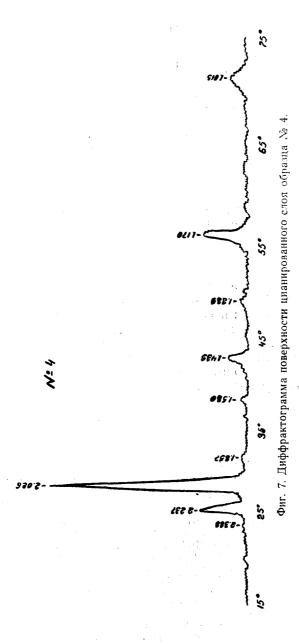
которая их размытость в области углов 25—28°.

Структурные фазы образца № 2 отличаются от фаз образца № 108 меньшей тетрагональностью мартенсита и несколько большим его количеством. В структуре слоя также наблюдаются фазы карбонитрида (Fe<sub>3</sub>O<sub>4</sub>), 7 — фазы (аустенита) и легированного азотом цементита (таблица 2). Несколько большее в слое количество мартенсита и вызвало некоторое повышение твердости образца № 2, в сравнении с образцом № 108 (таблица 1). Рентгенограмма поверхности цианированного слоя образца № 2 дана на фиг. 4 г.

# Образеи № 4


На диффрактограмме (фиг. 7) зафиксированы линии — фазы (мартенсита с малой тетрагональностью) и две слабые линии азотистого цементита (таблица 2). Этим и

|     | Исследуемые образцы  № 1 № 72 № 108 № 2 № 4 Fe <sub>3</sub> O <sub>4</sub> |            |                          |            |                            |            |                                                   |     |                            |     |                |            |       |          |                               |  |
|-----|----------------------------------------------------------------------------|------------|--------------------------|------------|----------------------------|------------|---------------------------------------------------|-----|----------------------------|-----|----------------|------------|-------|----------|-------------------------------|--|
|     | Nº 1                                                                       |            | <u>№ 72</u>              |            |                            | № 108      |                                                   |     |                            | -3  | № 2<br>———     | ]          | № 4   | _I       | e <sub>3</sub> O <sub>4</sub> |  |
|     |                                                                            |            | поверх-<br>ность<br>слоя |            | глубина<br>слоя<br>0,10 мм |            | пове <b>р</b> х-<br><b>н</b> ость<br><b>с</b> лоя |     | глубина<br>слоя<br>0,10 мм |     |                |            |       |          |                               |  |
| j   | J d/n                                                                      | 1          | d/n                      | 1          | d/n                        | 1          | d/13                                              | I   | d/n                        | 1   | d/n            | I          | d/n   | ı        | d/n                           |  |
|     |                                                                            | 13         | 2,96                     |            |                            | 12         | 2,96                                              |     |                            |     |                |            |       | 33       | 2,97                          |  |
|     |                                                                            | 6          | 2,80                     |            |                            |            |                                                   |     |                            | •   |                |            | 1     | 22       | 2.79                          |  |
|     |                                                                            | 9          | <b>2,7</b> 0             |            |                            | 11         | 2,7 <b>0</b>                                      | Ì   |                            | į   |                | }          | Ì     |          |                               |  |
|     |                                                                            |            |                          |            |                            |            |                                                   | 6   | 2,63                       |     |                |            | :     | 1        | -                             |  |
|     |                                                                            | 28         | 2,53                     |            |                            | 28         | 2.54                                              | 8   | 2,54                       | 5   | 2,54           |            | Ī     | 100      | 2,530                         |  |
|     |                                                                            | 13         | 2,48                     |            |                            |            |                                                   |     | }                          |     |                |            | 1     |          |                               |  |
|     |                                                                            |            |                          |            |                            | 36         | 2,385                                             | 30  | 2,388                      | 10  | 2,396          | 3          | 2,388 | Ì        | }                             |  |
|     |                                                                            | 21         | 2,305                    | 22         | 2,304                      | 15         | 2,288                                             | 25  | 2,302                      |     | 2,317          |            | į     |          | ,                             |  |
|     |                                                                            | ĺ          |                          |            |                            | 25         | 2,267                                             | 27  | 2,261                      |     | 1              |            | -     |          |                               |  |
| 28  | 2,242                                                                      |            |                          | 13         | 2,235                      | 15         | 2, <b>246</b>                                     |     | }                          | 24  | {              | 2 <b>3</b> | 2,237 |          |                               |  |
|     |                                                                            | 7          | 2,224                    |            |                            | 28         | 2,224                                             | 28  | 2,226                      |     | 2,217          |            | ł     | ì        |                               |  |
|     |                                                                            |            |                          |            | 1                          | 12         | 2,180                                             | 8   | 2,182                      |     |                |            | 1     | <u> </u> |                               |  |
|     |                                                                            | 28         | 2,146                    |            |                            |            |                                                   |     |                            | }   | 1              |            |       |          | ,                             |  |
|     |                                                                            |            |                          |            |                            | 59         | 2,111                                             | 60  | 2,107                      |     | 2,109          | <br> -<br> |       | 22       | 2.104                         |  |
| İ   |                                                                            | 100        | 2,094                    | 100        | 2,086                      | 39         | 2,094                                             | 100 | 2,090                      | 100 | {              |            | į     |          |                               |  |
|     |                                                                            |            |                          |            |                            | 71         | 2,06 <b>4</b>                                     | 74  | 2,072                      |     |                |            |       |          |                               |  |
| 100 | 2, <b>027</b>                                                              |            |                          | <b>4</b> 8 | 2,034                      | <b>6</b> 6 | 2,031                                             | 78  | <b>2,03</b> 2              |     | 2 <b>,02</b> 0 | 100        | 2,026 |          |                               |  |
| ļ   |                                                                            | 24         | 2,013                    |            |                            | 100        | 2,015                                             | 71  | 2,020                      |     |                |            |       |          |                               |  |
|     |                                                                            |            |                          |            | ,                          | 55         | 1,976                                             | 38  | 1,979                      |     |                |            |       | . }      |                               |  |
|     |                                                                            |            |                          |            |                            | 35         | 1,872                                             | 24  | 1,869                      | 11  | 1,872          |            |       |          |                               |  |
| 1   |                                                                            |            |                          |            |                            | <b>5</b> 0 | 1,854                                             | 30  | 1,857                      |     |                | 3          | 1,857 | ļ        |                               |  |
| ł   |                                                                            | 3 <b>2</b> | 1,809                    | 18         | 1,815                      | 15         | 1,809                                             | 26  | 1,812                      | 20  | 1,813          |            | ļ     | ļ        |                               |  |
|     |                                                                            |            |                          |            |                            | 17         | 1,764                                             | 10  | 1,768                      |     |                |            |       | 1        | )                             |  |


| FeO no<br>[12] |       | Fe <sub>3</sub> C no<br>[9] |                                  | Fe: | <sub>3</sub> С по<br>} | F <b>e</b> <sub>3</sub> | Спо   | Fe <sub>4</sub> 1 | N no  | Рентге-<br>нограмма<br>аустени-<br>та С<br>а==2,62A° |       |  |
|----------------|-------|-----------------------------|----------------------------------|-----|------------------------|-------------------------|-------|-------------------|-------|------------------------------------------------------|-------|--|
| ]              | d/n   | 1                           | d/n                              | I   | d/n                    | 1                       | d/n   | I                 | d/n   | I                                                    | d/n   |  |
| 70             | 2,470 | 80<br>50<br>. 60            | 2,371<br>2,260<br>2,212<br>2,105 |     | 2,380                  | 79                      | 2,370 | 100               | 2,180 |                                                      |       |  |
|                |       | 70                          | 2,063                            |     | 2, <b>0</b> 65         |                         |       |                   |       |                                                      | 2,090 |  |
|                |       | 70                          | 1,971                            |     | 1,970                  | 77                      | 1,974 | 40                | 1 000 |                                                      |       |  |
|                |       | 7 <b>0</b><br>80            | 1,862<br>1,849                   |     | 1,850                  | 50                      | 1,869 | 40                | 1,880 |                                                      | -     |  |
| :              |       | 60                          | 1,759                            |     | 1,760                  | 31                      | 1,760 |                   |       |                                                      | 1,811 |  |

|             | Исследуемые образцы<br>№ 1 № 72 № 108 № 2 № 4   Fe <sub>3</sub> O <sub>4</sub> |            |                             |    |                     |    |                                       |     |       |    |            |    |        |            |                               |
|-------------|--------------------------------------------------------------------------------|------------|-----------------------------|----|---------------------|----|---------------------------------------|-----|-------|----|------------|----|--------|------------|-------------------------------|
| N           | <u>1</u>                                                                       |            | №                           | 72 |                     |    | №                                     | 108 |       | _7 | <b>§</b> 2 | 1  | № 4    | F          | e <sub>3</sub> O <sub>4</sub> |
|             |                                                                                | н          | ер <b>х-</b><br>ость<br>тоя | Č. | бина<br>лоя<br>0 мм | Н  | поверх-<br>ность слоя<br>слоя 0,10 мм |     |       |    |            |    | ,      |            |                               |
| I           | d/n                                                                            | I          | d/n                         | I  | d/n                 | 1  | d/n                                   | I   | d/n   | I  | d/n        | I  | d/n    | I          | d/n                           |
|             |                                                                                |            |                             |    |                     | 20 | 1,686                                 | 8   | 1,686 | 5  | 1,694      |    |        |            |                               |
|             |                                                                                | 6          | 1,616                       |    |                     | 7  | 1,616                                 |     |       |    |            |    |        | 26         | 1,617                         |
| 3,7         | 1,584                                                                          | ]<br>      |                             |    |                     | 17 | 1,589                                 | 6   | 1,596 |    |            | 3  | 1,580  |            |                               |
|             |                                                                                | 11         | 1,517                       |    |                     |    |                                       |     |       |    |            |    |        |            |                               |
|             |                                                                                |            |                             |    |                     | 13 | 1,512                                 | 6   | 1,510 |    |            |    |        |            |                               |
|             |                                                                                | 10         | 1,483                       |    |                     | 15 | 1, <b>4</b> 85                        |     |       |    |            |    | }      | <b>3</b> 5 | 1,484                         |
| 17          | 1,437                                                                          | 5 <b>4</b> | 1, <b>42</b> 6              | 7  | 1,431               |    |                                       | 6   | 1,415 | 8  | 1,430      | 9  | 1,435  |            |                               |
|             |                                                                                |            |                             |    |                     | 21 | 1,328                                 | 5   | 1,332 |    |            |    |        | 2          | 1,329                         |
| 3,5         | 1,292                                                                          | 16         | 1,279                       | 12 | 1,280               | 14 | 1,279                                 | 14  | 1,281 | 11 | 1,278      | 2  | 1,289  | 6          | 1,280                         |
| •           |                                                                                |            |                             |    |                     | 15 | 1,226                                 | 11  | 1,223 |    |            |    | •      |            |                               |
|             |                                                                                |            |                             |    |                     | 15 | 1,217                                 |     |       |    | j<br>į     |    | ļ<br>] | 2          | 1,210                         |
|             |                                                                                |            |                             | 5  | 1,203               |    |                                       | 10  | 1,199 |    |            |    |        |            |                               |
| 32          | 1.174                                                                          | 10         | 1,172                       | l  | 1,177               |    |                                       | 11  | 1,172 | 19 | 1,174      | 22 | 1,170  |            |                               |
|             |                                                                                |            |                             |    |                     | 21 | 1,162                                 |     |       |    |            |    |        |            |                               |
|             |                                                                                |            |                             |    |                     | 16 | 1,154                                 |     |       |    |            |    |        |            |                               |
| 0.5         | 1,119                                                                          |            |                             |    |                     | 29 | 1,127                                 | 11  | 1,127 | 5  | 1,127      |    |        | 6          | 1,121                         |
| <b>0,</b> 0 | 1,                                                                             |            |                             |    |                     | 1  | 1,106                                 | Ì   | 1,194 |    | 1,108      |    |        |            | ·                             |
|             |                                                                                | 17         | <b>1,09</b> 0               | 11 | 1 091               | l  | 1,089                                 | [   | 1,093 |    | 1,089      |    |        | 14         | 1, <b>0</b> 93                |
|             |                                                                                | ĺ          | 1,042                       | Į. | 1,043               | 1  | 1,044                                 | ļ   | 1,046 |    | 1,042      |    |        |            | 1 <b>,0</b> 49                |
| 19          | 1,014                                                                          | 10         | 1,0714                      |    | 1,040               | 12 |                                       |     |       |    | ,          | 8  | 1,013  | '          |                               |
| 14          | 1,014                                                                          |            | l                           | l  |                     | {  | l                                     |     |       |    |            |    | .,     |            |                               |

| Fe(<br>[12] | O no  | Fe <sub>3</sub> | С по           | Fe: | <sub>3</sub> С по<br>] | Fe <sub>3</sub> | C no           | Fe₄<br>[11] | N no               | но<br>ay | ентге-<br>грамма<br>стени-<br>та С<br>=2,62A° |
|-------------|-------|-----------------|----------------|-----|------------------------|-----------------|----------------|-------------|--------------------|----------|-----------------------------------------------|
| 1           | d/n   | I               | d/n            | I   | d/n                    | I               | d/n            | I           | d/n                | I        | d/n                                           |
|             |       | 70              | 1,682          |     | 1,680                  | 46              | 1,681          |             |                    |          |                                               |
|             |       | 30              | 1,634          |     |                        | 14              | 1,636          |             |                    |          |                                               |
|             |       | 70              | 1,584          |     | 1,580                  |                 |                |             |                    |          |                                               |
| 80          | 1,510 | :               |                |     |                        |                 |                |             |                    |          |                                               |
|             |       | 70              | 1,5 <b>0</b> 9 |     |                        | 20              | 1,508          |             |                    |          |                                               |
|             |       | •               |                |     |                        |                 |                |             |                    |          | F                                             |
|             |       | 30              | 1,401          |     |                        | 20              | 1, <b>40</b> 2 |             |                    |          |                                               |
| 40          | 1 200 | 80              | 1,325          |     | 1,321                  | 129             | 1,332          | 20          | 1,332              |          |                                               |
| <b>4</b> 0  | 1,293 | 70              | 1.000          |     |                        | 100             | 1 000          |             |                    |          | 1,280                                         |
|             |       | 70<br><b>80</b> | 1,222          |     |                        | 133             | 1,220          |             |                    |          |                                               |
|             |       | 80              | 1,211<br>1,188 |     |                        | 12<br>6         | 1,201<br>1,192 |             | y ≯<br>+ 5,<br>- 2 |          |                                               |
|             |       | 00              | 1,100          |     |                        | U               | 1,192          |             |                    |          |                                               |
|             |       | 90              | 1,158          |     | 1,160                  | 100             | 1,159          | .3.         |                    |          |                                               |
|             |       | 70              | 1,148          |     | 1.150                  | 100             | ,,,,,,,        |             |                    |          |                                               |
|             |       | 80              | 1,124          |     | 1,126                  | 62              | 1,130          | 30          | 1,136              |          |                                               |
|             |       | 80              | 1,102          |     | 1,105                  | 383             | 1,124          |             |                    |          |                                               |
|             |       |                 |                |     |                        |                 |                |             |                    | 1        | 1,092                                         |
|             |       |                 |                |     |                        |                 |                |             |                    |          | 1,045                                         |



Фиг. 6. Диффрактограмма поверхности цианированного слоя образца № 2.



следует объяснить некоторое снижение твердости и микротвердости цианированного слоя, подвергнутого отпуску при температуре 250° (таблица 1).

Рентгенограмма поверхности цианированного слоя

разца № 4 дана на фиг. 4 д.

Рассчитанная нами теоретическая рентгенограмма  $\Sigma$  фазы с параметрами гексагональной решетки a=2,75 A° и C = 4,40A° оказалась сходной с фотографией ретгенограммы — фазы, приведенной в работе [2], но совершенно отлична от фотографии рентгенограммы  $\Sigma$  — фазы, данной в работе [1].

Однако во всех исследуемых нами образцах в цианированном слое, полученным при температуре процесса 850°, Σ — фаза не была обнаружена.

#### Выволы

1. Структурные фазы, образующиеся в цианированном слое стали 20, зависят от режимов процесса цианирования и последующей термической обработки.

2. При температуре процесса 850°  $\Sigma$  — фаза (Fe<sub>2</sub>N) не

обнаружена.

3. В слое, полученном при выдержке 3 часа, наблюдается наиболее благоприятное сочетание фаз в структуре цианированного слоя стали 20, обеспечивающее его наиболее высокую твердость и иэносоустойчивость.

#### ЛИТЕРАТУРА

1. Селинский Я. П. и Чернышев В. В. Цианирование сепараторного железа. «Вестник металлопромышленности», 1934, № 6, стр. 87-94.

2. Палатник Л. С. Исследование системы N + сталь. «Журнал

технической физики», 1936, т. W., вып. 4, стр. 583—604.

3. Фукс М. Я. н. Аронсон Э. В. Рентгенографическое исследование азотированного слоя углеродистой и легированных сталей. «Журнал технической физики», 1954, т. XXIV, вып. 8, стр. 1448—1454. 4. Пиискер З. Г. и Каверин С. В. Электроннографическое

исследование структуры гексагональных нитридов железа, ДАН СССР,

1954, т. XCVI, № 3, стр. 519—522. 5. Лютцау В. Г. Рентгеноструктурное исследование «белой корочки», образующейся на трущейся поверхности. «Трение и износ в машинах», 1956, М., Сб. 11.

6. Вязников Н. Ф. и Юргенсон А. А. Газовое цианирова-

ние (нитроцементация). «Металлург», 1940, № 7, стр. 24—32.

7. Прокошкин Д. А. и Аржанный П. М. Структура и свой-

етва стали, «Сб. трудов института стали им. И. В. Сталина», 1954, т. XXX. 8. Палатник Л. С., Любарский И. М., Любченко А. П., Тананко И. А. О фазовом составе цементованного слоя стали. «Финика металлов и металловедение», 1955, т. 1, вып. 3, стр. 500—505. 9. Азинцев Г. и Арбузов. О состоянии карбида, образую-

9. Азинцев Г. и Арбузов. О состоянии карбида, образуюниегося при изотермическом распаде аустенита. «Журнал технической фи-

зикн», 1950, т. XX, вып. 1.

10. Островский И. М., Вржащ Э. И., Селянцев Г. М. Производственные испытания цианированных режущих инструментов. «Известия Иркутского сельскохозяйственного института», 1958, вып. VIII.

11. Китайгородский А. И. Рентгеноструктурный анализ мел-

кокристаллических и аморфных тел, ГИТТЛ, 1952.

12. Михеев В. И. Рентгенометрический определитель минералов

ГГТИ, М., 1957.